1.LED驱动的设计思想

2.51单片机做个led路灯照明,求1W led驱动电路

3.设计一个驱动LED组的电路并制成LED灯

4.单片机中LED显示电路用三极管驱动电路怎么连接啊?四个数码管。

led显示驱动电路设计方案_led显示驱动电路设计

市面上大多数可控硅调光器基本结构如图1所示,其工作原理如下:当交流电压加双向可控硅TRIAC两端时,由于Rt、Ct组成的RC充电电路有一个充电时间,电容上的电压是从0V开始充电的,并且TRIAC的驱动极串联有一个DIAC(双向触发二极管,一般是30V左右),因此TRIAC可靠截止。当Ct上的电压上升到30V时,DIAC触发导通,TRIAC可靠导通,此时TRIAC两端的电压瞬间变为零,Ct通过Rt迅速放电,当Ct电压跌落到30V以下时,DIAC截止,如果TRIAC通过的电流大于其维持电流则继续导通,如果低于其维持电流将会截止。电感L和电容C的作用是减小电流和电压的变化率,以抑制电磁干扰EMI问题。

可控硅前沿调光器若直接用于控制普通的LED驱动器,LED灯会产生闪烁,更不能实现宽范围的调光控制。原因归结如下:

(1)可控硅的维持电流问题。目前市面上的可控硅调光器功率等级不同,维持电流一般是7~75mA(驱动电流则是7~100mA),导通后流过可控硅的电流必须要大于这个值才能继续导通,否则会自行关断。

(2)阻抗匹配问题。当可控硅导通后,可控硅和驱动电路的阻抗都发生变化,且驱动电路由于有差模滤波电容的存在,呈容性阻抗,与可控硅调光器存在阻抗匹配的问题,因此在设计电路时一般需要使用较小的差模滤波电容。

(3)冲击电流问题。由于可控硅前沿斩波使得输入电压可能一直处于峰值附近,输入滤波电容将承受大的冲击电流,同时还可能使得可控硅意外截止,导致可控硅不断重启,所以一般需要在驱动器输入端串接电阻来减小冲击。

(4)导通角较小时LED会出现闪烁。当可控硅导通角较小时,由于此时输入电压和电流均较小,导致维持电流不够或者芯片供电Vcc不够,电路停止工作,使LED产生闪烁。 线性调光存在的问题,即人眼在低亮度情况下对光线的细化很敏感;而在较亮时,由于人眼视觉的饱和,光线较大的变化却不易被察觉。并提出了利用单片机编程来实现调光信号和调光输出的非线性关系(如指数、平方等关系)的方法,使得人眼感觉的调光是一个线性平稳过程。

文中设计的电路利用RC充放电电路来实现这一功能。

图2是一种利用普通的脉宽调制PWM芯片结合电路来搭建可控硅调光的LED驱动电路框图。维持电流补偿电路通过检测R1端电压(即输入电流)来控制流过维持电流补偿电路的电流。当输入电流较小时,维持电流补偿电路上流过较大的电流;当输入电流较大时,维持电流补偿电路关断,维持电流补偿以恒流源的形式保证可控硅的维持电流。调光控制电路包括比较器、RC充放电电路和增益电路。实验中选用一款旋钮行程和斩波角成正比的可控硅调光器,其最小导通角约为30°。

根据图2中,RC充放电电路的输出经过增益电路后可得电流参考为:

式中k为增益,VC为RC充放电电路的输入电压,τ为RC的时间系数,θ为可控硅的导通角。

则在最小导通角对应的输出为零,即电路输出的最大值对应电流参考的最大值:

从式(1)和式(2)可得输出电流表达式如式(3)所示,输出电流在不同RC时间系数下随可控硅导通角之间的关系如图3a)所示。

在斩波角为θ时,电路对应的输入功率为:

式中Vp为输入电压峰值,Rin为等效输入阻抗。

设电路的变换效率为η,且电路的输出功率为PO=IO·UO,则可得到电路的等效输入阻抗如式(5)所示。

从式(5)可得电路的功率因数如式(6)所示,功率因数随可控硅的导通角的关系如图3b)所示。

根据以上分析,本文设计一台基于反激变换器的可控硅调光LED驱动器,控制芯片为NCP1607;输入交流电压220V,最大输出功率为25W,最大输出电流为0.7A;以3串(每串10只0.8W的LED灯)相并联作为负载;RC时间系数选择0.5,增益为0.2。电路的实验波形和工作特性曲线如图4所示。

图4a)、b)、c)为可控硅导通角为115°时阻抗匹配开关驱动电压VZ、输入电流Iin、输入电压Vin的波形,电路的输出电流为470mA,功率因数为0.78。从图中可看出,当可控硅导通瞬间,由于驱动器输入端有差模滤波电容导致输入电流有冲击电流尖峰,而当输入电流小于一定值时,阻抗匹配开关开通以保证流过可控硅的电流大于其维持电流。

图4d)为可控硅不同导通角对应的输出电流曲线,实际调试中可控硅导通角在150°之后就接近满载输出了。图4e)为可控硅在不同导通角下对应电路的cosφ曲线。 本文分析了现有可控硅调光器用于LED驱动时存在的问题,并根据人眼对光线反应非线性的特点,设计了一种利用普通PWM芯片结合电路搭建的可控硅非线性调光LED驱动电路,分析了电路在调光过程中的工作特性,实验结果实现0~100%平稳无闪烁调光。

LED驱动的设计思想

如果是串电阻限流降压:

电阻上压降5 - 3 = 2V.

额定电流20mA,一般选取10~15mA的工作电流即可.于是电阻R应大于 = U/I = 2/0.015 = 133.33Ω

从常见阻值的角度,可选取150Ω.此时功率为U?/R = 2×2÷150 = 0.0267W,因此封装选取0603及以上的贴片、或者0.25W及以上的直插就足够了.

51单片机做个led路灯照明,求1W led驱动电路

LED在可携式产品中背光源的地位已经不可动摇,即便是在大尺寸LCD的背光源当中,LED也开始挑战CCFL(冷阴极萤光灯)的主流地位;而在照明领域,LED作为半导体照明最关键的部件,更是因为顶着节能、环保、长寿命、免维护等诸多光环而受到市场的追捧。驱动电路是LED(发光二极管)产品的重要组成部分,无论在照明、背光源还是显示板领域,驱动电路技术架构的选择都应与具体的应用相匹配。

LED的发光原理是在它两端加上正向电压,使半导体中的少数载流子和多数载流子发生复合,放出过剩能量,从而引起光子的发射。LED驱动电路的主要功能是将交流电压转换为恒流电源,同时按照LED器件的要求完成与LED的电压和电流的匹配。LED驱动电路除了要满足安全要求外,另外的基本功能应有两个方面:

一是尽可能保持恒流特性,尤其在电源电压发生±15%的变动时,仍应能保持输出电流在±10%的范围内变动。

1、避免驱动电流超出最大额定值,影响其可靠性。

2、获得预期的亮度要求,并保证各个LED亮度、色度的一致性。

二是驱动电路应保持较低的自身功耗,这样才能使LED的系统效率保持在较高水准。

PWM(脉宽调制)技术是一种传统的调光方式,它利用简单的数位脉冲,反覆开关LED驱动器,系统只需要提供宽、窄不同的数位式脉冲,即可简单地实现改变输出电流,从而调节LED的亮度。该技术的优点在于能够提供高品质的白光,以及应用简单,效率高,但一个致命的缺点是容易产生电磁干扰,有时甚至会产生人耳能听见的杂讯。

升压是LED驱动电路的重要任务,而电感升压和电荷泵升压是两种不同的拓扑模式。“由于LED是由电流驱动的,而电感在进行电流转换时效率最高,因此电感升压方式最大的优点就是效率高,如果设计得当可以超过90%;不过它的缺点也同样明显,就是电磁干扰很强,对手机等通信产品的系统要求就非常高。随着电荷泵的出现,用电荷泵的升压方式其效率将低于电感升压。

无论在照明应用还是背光应用领域,提高驱动电路的转换效率都是产品设计者必须面对的问题。提高转换效率,不仅有利于可携式产品延长待机时间,同时也是解决LED散热问题的重要手段。在照明领域,由于使用大功率LED,因此提高转换效率就显得尤为重要。

LED在工作时需要有稳流、稳压的元件,但是此类元件应具备自身承担的分压高,但功耗要小的特性,否则将使具有较高效率的LED因为驱动电路的工作功耗太大而使总体系统的效率大为降低,有悖于节能高效的宗旨。所以应尽可能不用电阻或串联稳压电路来作为LED驱动器的限流主电路,而应该用电容、电感或有源开关电路等高效电路,这样才能保证LED系统的高效率。用串联式集成恒功率输出电路,可以使LED的光输出在很宽的电源范围内保持恒定,但一般的IC电路会因此而使效率有所下降。用有源开关电路可以保证在较高的转换效率下实现电源电压大幅度变化时恒功率输出。

但是以其独特的长处,可以在安全特地电压(游泳池、划水池内水下灯具、矿灯)条件下高效工作。此外,在直接用绿色电能(太阳能、风能等),以及应急照明方面也有着其独特的优势。尤其在调光方面,LED不仅可实现0~100%的调光,并且可保证在整个调光过程保持较高光效,并且不损害LED的寿命,而气体放电灯则很难做到这一点。

设计一个驱动LED组的电路并制成LED灯

给您两个方案,一个是正规方案,另一个是建议方案。

先说简易方案,用三极管与功率电阻组合用单片机控制这是简易方案。然后说明其中作用,三极管选用9013,作用是放大,他的几级串电阻接单片机。他的发射极串x欧姆电阻接地,他的集电极串接led和电阻。其中集电极电阻r和发射极电阻x欧需功率电阻,大小为1W的功率电阻。集电极供电电源是由7808稳压器,若改为7805则可减小阻值,具体电阻阻值这需要计算。

LED有个特性,在未达到额定电压时候是可以点亮的,此时电流小于额定电流很多,但有可能亮度与额定电压下变化并不明显,若超过额定电压,则电流比额定电流会大很多。也就是说需要使led串接电阻,使其电流一定。那么计算阻值时候,比如led额定电流要求300ma,那么我们只要保证他是通过300ma去计算阻值。

由于这个简单方案我做过,故给个红笔更改过的电路图,只不过我是2led串联,红叉代表不接,红线代表链接。具体看图。

正规方案则是考虑到功率电阻确实可以保证led点亮,但无用功耗大,故正规方案用恒流源的思想,那么获得恒流源我们可以用运放搭建,也可以用稳压器,或者三极管。

但由于说道正规,那么就是专业性的做法,在灯数少的情况下,我们可选用恒流源芯片直接驱动led。距离某国内主流厂家的恒流源led的专用芯片;那么我先罗列下参数:

LED驱动器产品列表

型号 输入电压范围(VDC) 输出电流(mA) 效率% 功率W(Max) 尺寸(mm) 说明 特点

KC24H-300R(X1X2X3) 5.5-46 300 95 10.8 22.8*10.2*9.5 RoHS 模拟调光+PWM调光

KC24H-350R(X1X2X3) 5.5-46 350 95 12.6 22.8*10.2*9.5 RoHS 模拟调光+PWM调光

KC24H-500R(X1X2X3) 5.5-46 500 95 18 22.8*10.2*9.5 RoHS 模拟调光+PWM调光

KC24H-600R(X1X2X3) 5.5-46 600 95 21.6 22.8*10.2*9.5 RoHS 模拟调光+PWM调光

KC24H-700R(X1X2X3) 5.5-46 700 95 25.2 22.8*10.2*9.5 RoHS 模拟调光+PWM调光

KC24AH-300 5.5-36 300 95 9.6 22.8*10.2*9.5 RoHS PWM调光

KC24AH-350 5.5-36 350 95 11.2 22.8*10.2*9.5 RoHS PWM调光

KC24AH-500 5.5-36 500 95 16 22.8*10.2*9.5 RoHS PWM调光

KC24AH-600 5.5-36 600 95 19.2 22.8*10.2*9.5 RoHS PWM调光

KC24AH-700 5.5-36 700 95 22.4 22.80*10.20*9.5 RoHS PWM调光

KC24RT-300 5.5-48 300 96 10.8 23.86*18.10*8.0 RoHS 模拟调光+PWM调光

KC24RT-350 5.5-48 350 96 12.6 23.86*18.10*8.0 RoHS 模拟调光+PWM调光

KC24RT-500 5.5-48 500 96 18 23.86*18.10*8.0 RoHS 模拟调光+PWM调光

KC24RT-600 5.5-48 600 96 21.6 23.86*18.10*8.0 RoHS 模拟调光+PWM调光

KC24RT-700 5.5-48 700 96 25.2 23.86*18.10*8.0 RoHS 模拟调光+PWM调光

KC24W-300(X1X2X3) 5.5-48 300 96 10.8 22.10*12.55*9.1 RoHS 模拟调光+PWM调光

KC24W-350(X1X2X3) 5.5-48 350 96 12.6 22.10*12.55*9.1 RoHS 模拟调光+PWM调光

KC24W-500(X1X2X3) 5.5-48 500 96 18 22.10*12.55*9.1 RoHS 模拟调光+PWM调光

KC24W-600(X1X2X3) 5.5-48 600 96 21.6 22.10*12.55*9.1 RoHS 模拟调光+PWM调光

KC24W-700(X1X2X3) 5.5-48 700 96 25.2 22.10*12.55*9.1 RoHS 模拟调光+PWM调光

KC24H-1000(X1X2X3) 5.5-48 1000 36 31.70*20.30*12.65 RoHS 模拟调光+PWM调光

我们可以用过以上芯片去接led,并且此类电路设计比较简单,易于操作。比如以下:

电路极少,这是我们期望了。另外供电电压是可变的,就像是接9v也可以接20也还是可以,像是稳压器一样。所以很方便。而且就两三页文档。方便看。

如是大规模的led,就要考虑到总线上的电路极大,需要分立多个电源模块供电,相对复杂,这里不做讨论。

最后提一下

如果做pcb,要考虑led散热了。此类led发热很大,当然了?应对方案就是铺铜,实心或者影化线铺铜。

此板子的原理图:

最后祝你调试成功,没了。

单片机中LED显示电路用三极管驱动电路怎么连接啊?四个数码管。

1.led是直流工作元件,必须使用直流电源,交流(AC)须经整流、滤波、调适电压使用。

2.led对电压、特别是电流要求严格,否则会烧毁或加速光衰损坏,在没有恒流电路的情况下,最好单只led的实际工作电压取得低些,比如你的3.2V取3V计算

3.DC 6V电源:2个led串联为一路,区分好正负极性接入(或若干个这样的一路并联接入)。

4.AC(交流)36V:二极管整流(半波、全波、桥式)、电容滤波后,量一下电解电容2端的空载电压(最高能达到约50V左右,注意操作时防电击),除以3,就是led串联的理论数量。实际操作时,根据led亮度适度增减串联的led数量即可。

5.既然你这么提问,真的需要充充电。否则说得再详细,也无法遥控帮你解决具体问题

//单片机中LED显示电路用三极管驱动电路四个数码管。可以参考一下

#include<reg52.h>

sbit led0=P3^2;

sbit led1=P3^3;

sbit led2=P3^4;

sbit led3=P3^5;

sbit ledd=P3^7;

unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};

unsigned char g,s,b,d,a;

unsigned ?int num;

void delay(unsigned char x)

{

unsigned char i,j;

for(i=x;i>0;i--)

for(j=110;j>0;j--);

}?

void display()

{

P1=table[d];

led3=0;

delay(5);

led3=1;

P1=table[b];

led2=0;

delay(5);

led2=1;

P1=table[s];

led1=0;

delay(5);

led1=1;

P1=table[g];

led0=0;

delay(5);

led0=1;

}

void ont()

{

num=0;

TMOD=0x01;

TH0=(65536-50000)/256;

TL0=(65536-50000)%256;

EA=1;

ET0=1;

TR0=1;

}

void main()

{

ont();

while(1)

{

if(a==20)

{

a=0;

ledd=~ledd;

num++;

d=num/1000;

b=num%1000/100;

s=num%100/10;

g=num%10;

}

display();

if(num==10000)

{

num=0;

}

} }

void time_0() interrupt 1

{

TH0=(65536-50000)/256;

TL0=(65536-50000)%256;

a++;

}